Function reference
-
prepare_sciCSR()
- Prepare conda environment
scRNA-seq data processing and wrangling
Functions for basic scRNA-seq data processing wrangling, including B-cell-specific functionalities.
-
collapseIntoMetagenes()
- Group gene counts into metagenes to minimise individual differences
-
normalise_dimreduce()
- Normalisation and dimensionality reduction of scRNAseq gene counts
-
guessBarcodes()
- parse the substring inside a given cell identifier which corresponds to the nucleotide barcode
-
repairBarcode()
- Repairing cell barcodes in a list of data frames/matrices to match the Seurat object
-
convertSeuratToH5ad()
- wrapper function to convert Seurat Object to a AnnData .h5ad file
-
splitAnnData()
- Split AnnData object by levels in a specified meta data trait
-
read_loom_matrices()
- read loom matrices
-
combineLoomFiles()
- Combine velocyto loom files on multiple BAM files into one loom file
Merging Repertoire and scRNA-seq read counts
Functions for additing repertoire annotation features as metadata to gene expression count matrices.
-
annotatePairing()
- Annotate heavy-light chain pairing
-
collapseBCR()
- Collapse the VDJ repertoire data frames by cell barcode
-
AddCellMetaToVDJ()
- Add cell metadata from Seurat object into VDJ data frame
-
combineBCR()
- Add annotations from VDJ data frame into the Seurat object
CSR/SHM-based pseudotime
Functions for extracting and calculating cell pseudotime ordering using CSR and SHM information.
-
scanBam()
- Scan reads mapped to a given genomic range
-
getIGHmapping()
- wrapper function to scan sterile/productive IGH molecules from BAM file
-
getIGHreadType()
- Deduce type of IGH reads
-
getJunctionReads()
- extract reads covering splice junctions
-
summariseIGHreads()
- cast data frame IGH counts into a matrix
-
mergeIgHCountsToSeurat()
- merge IgH productive/sterile transcript count into Seurat Object
-
getCSRpotential()
- score cells by their Class Switch Recombination (CSR) status
-
getSHM()
- get somatic hypermutation level
-
getIsotype()
- label isotypes based on productive/sterile transcript levels
-
mergeVelocytoWithGEX()
- Combine velocyto loom data with AnnData
-
run_scVelo()
- Calculate RNA velocity using the python scvelo workflow
-
fitTransitionModel()
- Fit transition model on data using the python cellrank package
-
fitTPT()
- Fit Transition Path Theory (TPT) on the cellrank transition models
-
compareTransitionMatrices()
- Computing distances between multiple transition matrices
-
plotFluxMatrix()
- Visualise flux matrix describing class-switch recombination (CSR) transitions in data
-
plotStationaryDistribution()
- Visualise stationary distribution of isotypes in the data
-
plot_arrows()
- Plot arrows showing transitions in the style of RNA velocity plots
-
human_definitions
- Genomic coordinates of human heavy-chain immunoglobulin V, D, J, C genes
-
human_nmf
- Isotype sterile/productive signatures trained using human single-cell B cell atlas
-
mouse_definitions
- Genomic coordinates of mouse heavy-chain immunoglobulin V, D, J, C genes
-
mouse_nmf
- Isotype sterile/productive signatures trained using mouse single-cell B cell atlas