Skip to contents

Setting up dependencies

Wrapper to set up python dependencies.

prepare_sciCSR()
Prepare conda environment

scRNA-seq data processing and wrangling

Functions for basic scRNA-seq data processing wrangling, including B-cell-specific functionalities.

collapseIntoMetagenes()
Group gene counts into metagenes to minimise individual differences
normalise_dimreduce()
Normalisation and dimensionality reduction of scRNAseq gene counts
guessBarcodes()
parse the substring inside a given cell identifier which corresponds to the nucleotide barcode
repairBarcode()
Repairing cell barcodes in a list of data frames/matrices to match the Seurat object
convertSeuratToH5ad()
wrapper function to convert Seurat Object to a AnnData .h5ad file
splitAnnData()
Split AnnData object by levels in a specified meta data trait
read_loom_matrices()
read loom matrices
combineLoomFiles()
Combine velocyto loom files on multiple BAM files into one loom file

Merging Repertoire and scRNA-seq read counts

Functions for additing repertoire annotation features as metadata to gene expression count matrices.

annotatePairing()
Annotate heavy-light chain pairing
collapseBCR()
Collapse the VDJ repertoire data frames by cell barcode
AddCellMetaToVDJ()
Add cell metadata from Seurat object into VDJ data frame
combineBCR()
Add annotations from VDJ data frame into the Seurat object

CSR/SHM-based pseudotime

Functions for extracting and calculating cell pseudotime ordering using CSR and SHM information.

scanBam()
Scan reads mapped to a given genomic range
getIGHmapping()
wrapper function to scan sterile/productive IGH molecules from BAM file
getIGHreadType()
Deduce type of IGH reads
getJunctionReads()
extract reads covering splice junctions
summariseIGHreads()
cast data frame IGH counts into a matrix
mergeIgHCountsToSeurat()
merge IgH productive/sterile transcript count into Seurat Object
getCSRpotential()
score cells by their Class Switch Recombination (CSR) status
getSHM()
get somatic hypermutation level
getIsotype()
label isotypes based on productive/sterile transcript levels

RNA velocity

RNA velocity analysis in R by interfacing with python packages

mergeVelocytoWithGEX()
Combine velocyto loom data with AnnData
run_scVelo()
Calculate RNA velocity using the python scvelo workflow

Inferring transitions

Inferring transitions using CSR/SHM information or RNA velocity

fitTransitionModel()
Fit transition model on data using the python cellrank package
fitTPT()
Fit Transition Path Theory (TPT) on the cellrank transition models
compareTransitionMatrices()
Computing distances between multiple transition matrices

Data visualisation

Visualising inferred transitions

plotFluxMatrix()
Visualise flux matrix describing class-switch recombination (CSR) transitions in data
plotStationaryDistribution()
Visualise stationary distribution of isotypes in the data
plot_arrows()
Plot arrows showing transitions in the style of RNA velocity plots

Data objects

Data objects underlying sciCSR functionalities

human_definitions
Genomic coordinates of human heavy-chain immunoglobulin V, D, J, C genes
human_nmf
Isotype sterile/productive signatures trained using human single-cell B cell atlas
mouse_definitions
Genomic coordinates of mouse heavy-chain immunoglobulin V, D, J, C genes
mouse_nmf
Isotype sterile/productive signatures trained using mouse single-cell B cell atlas