Function reference
-
prepare_sciCSR() - Prepare conda environment
scRNA-seq data processing and wrangling
Functions for basic scRNA-seq data processing wrangling, including B-cell-specific functionalities.
-
collapseIntoMetagenes() - Group gene counts into metagenes to minimise individual differences
-
normalise_dimreduce() - Normalisation and dimensionality reduction of scRNAseq gene counts
-
guessBarcodes() - parse the substring inside a given cell identifier which corresponds to the nucleotide barcode
-
repairBarcode() - Repairing cell barcodes in a list of data frames/matrices to match the Seurat object
-
convertSeuratToH5ad() - wrapper function to convert Seurat Object to a AnnData .h5ad file
-
splitAnnData() - Split AnnData object by levels in a specified meta data trait
-
read_loom_matrices() - read loom matrices
-
combineLoomFiles() - Combine velocyto loom files on multiple BAM files into one loom file
Merging Repertoire and scRNA-seq read counts
Functions for additing repertoire annotation features as metadata to gene expression count matrices.
-
annotatePairing() - Annotate heavy-light chain pairing
-
collapseBCR() - Collapse the VDJ repertoire data frames by cell barcode
-
AddCellMetaToVDJ() - Add cell metadata from Seurat object into VDJ data frame
-
combineBCR() - Add annotations from VDJ data frame into the Seurat object
CSR/SHM-based pseudotime
Functions for extracting and calculating cell pseudotime ordering using CSR and SHM information.
-
scanBam() - Scan reads mapped to a given genomic range
-
getIGHmapping() - wrapper function to scan sterile/productive IGH molecules from BAM file
-
getIGHreadType() - Deduce type of IGH reads
-
getJunctionReads() - extract reads covering splice junctions
-
summariseIGHreads() - cast data frame IGH counts into a matrix
-
mergeIgHCountsToSeurat() - merge IgH productive/sterile transcript count into Seurat Object
-
getCSRpotential() - score cells by their Class Switch Recombination (CSR) status
-
getSHM() - get somatic hypermutation level
-
getIsotype() - label isotypes based on productive/sterile transcript levels
-
mergeVelocytoWithGEX() - Combine velocyto loom data with AnnData
-
run_scVelo() - Calculate RNA velocity using the python scvelo workflow
-
fitTransitionModel() - Fit transition model on data using the python cellrank package
-
fitTPT() - Fit Transition Path Theory (TPT) on the cellrank transition models
-
compareTransitionMatrices() - Computing distances between multiple transition matrices
-
plotFluxMatrix() - Visualise flux matrix describing class-switch recombination (CSR) transitions in data
-
plotStationaryDistribution() - Visualise stationary distribution of isotypes in the data
-
plot_arrows() - Plot arrows showing transitions in the style of RNA velocity plots
-
human_definitions - Genomic coordinates of human heavy-chain immunoglobulin V, D, J, C genes
-
human_nmf - Isotype sterile/productive signatures trained using human single-cell B cell atlas
-
mouse_definitions - Genomic coordinates of mouse heavy-chain immunoglobulin V, D, J, C genes
-
mouse_nmf - Isotype sterile/productive signatures trained using mouse single-cell B cell atlas